Cloud seeding operations 2013 began over the West Texas Weather Modification Association target area in March. This annual report serves as a summary of results. A total of **106 clouds** were seeded and identified by TITAN in **38 operational days**. Table 1 in page 1 summarizes the general figures:

Table 1: Generalities

First operational day: **March 9th 2013**
Last operational day: **October 18th 2013**

Number of operational days: 38
(Two in March, one in April, five in May, six in June, six in July, twelve in August, five in September and one in October)

According to the daily reports, operational days were qualified as:

- **Nineteen with excellent performance**
- **Eleven with very good performance**
- **Six with good performance**

- One in experimental mode (August 25th)
- One with corrupted data (March 9th)

Number of seeded clouds: 106 (62 small, 19 large, 25 type B)

Missed Opportunities: none with lifetime longer than 45 minutes
Small Clouds

Evaluations were done using TITAN and NEXRAD data.

Table 2 shows the results from the classic TITAN evaluation for the 62 small seeded clouds which obtained proper control clouds.

Table 2: Seeded Sample versus Control Sample (62 couples, averages)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Seeded Sample</th>
<th>Control Sample</th>
<th>Simple Ratio</th>
<th>Increases (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime</td>
<td>60 min</td>
<td>40 min</td>
<td>1.50</td>
<td>50 (33)</td>
</tr>
<tr>
<td>Area</td>
<td>72.5 km2</td>
<td>46.3 km2</td>
<td>1.57</td>
<td>57 (31)</td>
</tr>
<tr>
<td>Volume</td>
<td>273.3 km3</td>
<td>174.7 km3</td>
<td>1.56</td>
<td>56 (29)</td>
</tr>
<tr>
<td>Top Height</td>
<td>9.5 km</td>
<td>9.1 km</td>
<td>1.04</td>
<td>4 (2)</td>
</tr>
<tr>
<td>Max dBz</td>
<td>50.5</td>
<td>48.6</td>
<td>1.04</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Top Height of max dBz</td>
<td>4.0 km</td>
<td>4.1 km</td>
<td>0.98</td>
<td>-2 (-2)</td>
</tr>
<tr>
<td>Volume Above 6 km</td>
<td>94.5 km3</td>
<td>61.2 km3</td>
<td>1.54</td>
<td>54 (21)</td>
</tr>
<tr>
<td>Prec.Flux</td>
<td>425.2 m3/s</td>
<td>237.1 m3/s</td>
<td>1.79</td>
<td>79 (30)</td>
</tr>
<tr>
<td>Prec.Mass</td>
<td>1662.6 kton</td>
<td>700.2 kton</td>
<td>2.37</td>
<td>137 (116)</td>
</tr>
<tr>
<td>CloudMass</td>
<td>170.7 kton</td>
<td>102.1 kton</td>
<td>1.67</td>
<td>67 (33)</td>
</tr>
<tr>
<td>η</td>
<td>9.7</td>
<td>6.9</td>
<td>1.41</td>
<td>41 (60)</td>
</tr>
</tbody>
</table>

Bold values in parentheses are modeled values, whereas η is defined as the quotient of Precipitation Mass divided by Cloud Mass, and is interpreted as efficiency. A total of 381 AgI-flares and 29 hygroscopic flares were used in this sub-sample with an excellent timing (87 %) for an effective AgI average dose about 30 ice-nuclei per liter. The seeding operation for small clouds lasted about 9 minutes in average. An excellent increase of 116 % in precipitation mass together with an increase of 33 % in cloud mass illustrates that the seeded clouds grew at expenses of the environmental moisture (they are open systems) and used only a fraction of this moisture for their own maintenance. The increases in lifetime (33 %), area (31 %) volume (29 %), volume above 6 km (21 %), and precipitation flux (30 %) are notable. There are slight increases in top height (2 %) and maximum reflectivity (3 %).
The seeded sub-sample seemed 60% more efficient than the control sub-sample. Results are evaluated as excellent.

An increase of 116% in precipitation mass for a control value of 700.2 kton in 62 cases means:

\[\Delta_1 = 62 \times 1.16 \times 700.2 \text{ kton} \approx 50,358 \text{ kton} \approx 40,841 \text{ ac-f} \]

Large Clouds

The sub-sample of 19 large seeded clouds received a synergetic analysis. In average, the seeding operations on these large clouds affected 73% of their whole volume; with an almost perfect timing (99% of the material went to the clouds in their first half-lifetime). A total of 334 AgI-flares and 21 hygroscopic flares were used in this sub-sample for an effective AgI average dose about 90 ice-nuclei per liter.

Also in average, large clouds were 30 minutes old when the operations took place; the operation lasted about 36 minutes, and the large seeded clouds lived 195 minutes.

Table 3 shows the corresponding results:

Table 3: Large Seeded Sample versus Virtual Control Sample (19 couples, averages)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Seeded Sample</th>
<th>Control Sample</th>
<th>Simple Ratio</th>
<th>Increases (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime</td>
<td>195 min</td>
<td>165 min</td>
<td>1.18</td>
<td>18</td>
</tr>
<tr>
<td>Area</td>
<td>1010 km2</td>
<td>837 km2</td>
<td>1.21</td>
<td>21</td>
</tr>
<tr>
<td>Volume</td>
<td>5127 km3</td>
<td>4290 km3</td>
<td>1.20</td>
<td>20</td>
</tr>
<tr>
<td>Volume Above 6 km</td>
<td>2390 km3</td>
<td>2089 km3</td>
<td>1.14</td>
<td>14</td>
</tr>
<tr>
<td>Prec.Flux</td>
<td>9712 m3/s</td>
<td>8087 m3/s</td>
<td>1.20</td>
<td>20</td>
</tr>
<tr>
<td>Prec.Mass</td>
<td>80 484 kton</td>
<td>49 105 kton</td>
<td>1.64</td>
<td>64</td>
</tr>
</tbody>
</table>

An increase of 64% in precipitation mass for a control value of 49 105 kton in 19 cases may mean:

\[\Delta_2 = 19 \times 0.64 \times 49 \text{ 105 kton} = 597 \text{ 117 kton} \approx 484 \text{ 262 ac-f} \]
Type B Clouds

The sub-sample of 25 type B seeded clouds received a synergetic analysis. In average, the seeding operations on the type B clouds affected 27 % of their whole volume; with an excellent timing (91 % of the material went to the clouds in their first half-lifetime). A total of 532 AgI-flares and 24 hygroscopic flares were used in this sub-sample for an effective AgI average dose of about 110 ice-nuclei per liter.

Also in average, type B clouds were 125 minutes old when the operations took place; the operation lasted about 38 minutes, and the type B seeded clouds lived ~ 290 minutes.

Table 4 shows the results:

Table 4: Type B Seeded Sample versus Virtual Control Sample (25 couples, averages)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Seeded Sample</th>
<th>Control Sample</th>
<th>Simple Ratio</th>
<th>Increases (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime</td>
<td>290 min</td>
<td>280 min</td>
<td>1.04</td>
<td>4</td>
</tr>
<tr>
<td>Area</td>
<td>1761 km²</td>
<td>1649 km²</td>
<td>1.07</td>
<td>7</td>
</tr>
<tr>
<td>Volume</td>
<td>7448 km³</td>
<td>6999 km³</td>
<td>1.06</td>
<td>6</td>
</tr>
<tr>
<td>Volume Above</td>
<td>2938 km³</td>
<td>2801 km³</td>
<td>1.05</td>
<td>5</td>
</tr>
<tr>
<td>6 km</td>
<td>Prec.Flux</td>
<td>12667 m³/s</td>
<td>1.07</td>
<td>7</td>
</tr>
<tr>
<td>Prec.Mass</td>
<td>95 366 kton</td>
<td>81 620 kton</td>
<td>1.17</td>
<td>17</td>
</tr>
</tbody>
</table>

An increase of 17 % in precipitation mass for a control value of 81 620 kton in 25 cases may mean:

\[\Delta_3 = 25 \times 0.17 \times 81 620 \text{ kton} \approx 346 885 \text{ kton} \approx 281 324 \text{ ac-f} \]

The total increase: \[\Delta = \Delta_1 + \Delta_2 + \Delta_3 = 806 427 \text{ ac-f} \]
Micro-regionalization

Increases in precipitation mass were analyzed county by county in an attempt to better describe the performance and corresponding results. Table 5 below offers the details:

<table>
<thead>
<tr>
<th>County</th>
<th>Initial Seeding</th>
<th>Extended (increase)</th>
<th>Acre-feet (season value)</th>
<th>Inches (increase)</th>
<th>Rain (season value)</th>
<th>% (increase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glasscock</td>
<td>8</td>
<td>14</td>
<td>63 900</td>
<td>1.33</td>
<td>12.36 in</td>
<td>10.8 %</td>
</tr>
<tr>
<td>Sterling</td>
<td>11</td>
<td>16</td>
<td>78 700</td>
<td>1.00</td>
<td>13.73 in</td>
<td>7.3 %</td>
</tr>
<tr>
<td>Reagan</td>
<td>12</td>
<td>18</td>
<td>138 200</td>
<td>2.20</td>
<td>14.49 in</td>
<td>15.2 %</td>
</tr>
<tr>
<td>Irion</td>
<td>15</td>
<td>25</td>
<td>120 300</td>
<td>2.14</td>
<td>14.64 in</td>
<td>14.6 %</td>
</tr>
<tr>
<td>Tom Green</td>
<td>12</td>
<td>15</td>
<td>70 100</td>
<td>1.72</td>
<td>16.34 in</td>
<td>10.5 %</td>
</tr>
<tr>
<td>Crocket</td>
<td>17</td>
<td>22</td>
<td>161 400</td>
<td>1.07</td>
<td>17.88 in</td>
<td>6.0 %</td>
</tr>
<tr>
<td>Schleicher</td>
<td>17</td>
<td>19</td>
<td>65 800</td>
<td>0.94</td>
<td>17.53 in</td>
<td>5.4 %</td>
</tr>
<tr>
<td>Sutton</td>
<td>12</td>
<td>15</td>
<td>105 900</td>
<td>1.38</td>
<td>18.86 in</td>
<td>7.3 %</td>
</tr>
<tr>
<td>Total</td>
<td>104</td>
<td>144</td>
<td>804 300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside TA</td>
<td>2</td>
<td>5</td>
<td>~ 14 400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>1.47</td>
<td>15.73 in</td>
<td>9.6 %</td>
</tr>
</tbody>
</table>

(Initial seeding means the counties where the operations began, whereas extended seeding means the counties favored by seeding after the initial operations took place).
Hygroscopic Cases (really dual cases)

Hygroscopic seeding operations were used as a complement of the glaciogenic seeding. They have become an important component of the whole campaign. A total of 43 dual cases were achieved (22 small cloud, 9 large cloud, and 12 type B clouds).

For the small cases it was possible to make a comparison between pure glaciogenic seeding (40 cases) and dual seeding (22 cases). Tables 6 and 7 show the results:

Table 6 below shows the results of the TITAN evaluation for the small 41 glaciogenic cases:

Table # 6 Seeded Sample versus Control Sample (40 couples, averages)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Seeded Sample</th>
<th>Control Sample</th>
<th>Simple Ratio</th>
<th>Increases (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime</td>
<td>50 min</td>
<td>40 min</td>
<td>1.25</td>
<td>25 (11)</td>
</tr>
<tr>
<td>Area</td>
<td>64.1 km2</td>
<td>45.0 km2</td>
<td>1.42</td>
<td>42 (20)</td>
</tr>
<tr>
<td>Volume</td>
<td>239.8 km3</td>
<td>157.9 km3</td>
<td>1.52</td>
<td>52 (22)</td>
</tr>
<tr>
<td>Top Height</td>
<td>9.4 km</td>
<td>9.0 km</td>
<td>1.04</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Max dBz</td>
<td>50.2</td>
<td>48.4</td>
<td>1.04</td>
<td>4 (2)</td>
</tr>
<tr>
<td>Top Height of max dBz</td>
<td>3.9 km</td>
<td>3.9 km</td>
<td>1.00</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Volume Above 6 km</td>
<td>79.2 km3</td>
<td>45.6 km3</td>
<td>1.74</td>
<td>74 (20)</td>
</tr>
<tr>
<td>Prec. Flux</td>
<td>349.6 m3/s</td>
<td>228.4 m3/s</td>
<td>1.53</td>
<td>53 (28)</td>
</tr>
<tr>
<td>Prec. Mass</td>
<td>1207.6 kton</td>
<td>995.4 kton</td>
<td>2.02</td>
<td>102 (94)</td>
</tr>
<tr>
<td>Cloud Mass</td>
<td>146.2 kton</td>
<td>92.5 kton</td>
<td>1.58</td>
<td>58 (28)</td>
</tr>
<tr>
<td>η</td>
<td>8.3</td>
<td>6.4</td>
<td>1.30</td>
<td>30 (54)</td>
</tr>
</tbody>
</table>

A total of 186 AgI-flares were used in this sub-sample with an excellent timing (83 %) for an effective AgI-average dose about 40 ice-nuclei per liter. The increases indicate a dynamic response. The vertical reflectivity gradient index for this sample was - 3.45 dBz/km, indicating a clear continentalization (neutral value is - 4.0 dBz/km).
Table 7 illustrates the results corresponding to the small dual seeded cases.

Table 7: Seeded Sample versus Control Sample (22 couple, averages)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Seeded Sample</th>
<th>Control Sample</th>
<th>Simple Ratio</th>
<th>Increases (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime</td>
<td>75 min</td>
<td>45 min</td>
<td>1.67</td>
<td>67 (50)</td>
</tr>
<tr>
<td>Area</td>
<td>87.7 km²</td>
<td>48.8 km²</td>
<td>1.80</td>
<td>80 (47)</td>
</tr>
<tr>
<td>Volume</td>
<td>334.2 km³</td>
<td>205.1 km³</td>
<td>1.63</td>
<td>63 (38)</td>
</tr>
<tr>
<td>Top Height</td>
<td>9.7 km</td>
<td>9.3 km</td>
<td>1.04</td>
<td>4 (2)</td>
</tr>
<tr>
<td>Max dBz</td>
<td>51.0</td>
<td>49.2</td>
<td>1.04</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Top Height of max dBz</td>
<td>4.1 km</td>
<td>4.4 km</td>
<td>0.93</td>
<td>-7 (-6)</td>
</tr>
<tr>
<td>Volume Above 6 km</td>
<td>122.4 km³</td>
<td>89.7 km³</td>
<td>1.36</td>
<td>36 (20)</td>
</tr>
<tr>
<td>Prec_flux</td>
<td>562.8 m³/s</td>
<td>252.9 m³/s</td>
<td>2.23</td>
<td>123 (30)</td>
</tr>
<tr>
<td>Prec_mass</td>
<td>2490.0 kton</td>
<td>890.7 kton</td>
<td>2.80</td>
<td>180 (140)</td>
</tr>
<tr>
<td>Cloud_mass</td>
<td>215.3 kton</td>
<td>119.7 kton</td>
<td>1.80</td>
<td>80 (40)</td>
</tr>
<tr>
<td>η</td>
<td>11.6</td>
<td>7.4</td>
<td>1.57</td>
<td>57 (71)</td>
</tr>
</tbody>
</table>

A total of 195 AgI and 29 hygroscopic flares were used in this sample with an excellent timing (93 %) for silver iodide average dose of about 10 ice-nuclei per liter (static level). The seeded sample shows like-dynamic responses (see the increases) suggesting that the hygroscopic material was able to provide enough ice particles in order to reach dynamic dose levels. Results are evaluated as excellent. The vertical reflectivity gradient index for this sample was -3.98 dBz/km, very close to the normal index of - 4.0 dBz/km for neutral clouds (neither continentalization nor maritimization). The hygroscopic material seemed to improve the cloud efficiency.

Final Comments
1) Results are evaluated as **excellent**;

2) The micro-regionalization analysis showed increases per county; seedable conditions were more frequent over the central zone of the target area (Reagan, Irion, and Tom Green Counties); the average increase in precipitation, referred to the seasonal value, is about **10 %**. Maximum relative increases in precipitation were located on Reagan and Irion Counties;

3) Radar estimations of precipitation should be considered as measurements of trend. Nevertheless, seeding operations appeared to improve the dynamics of seeded clouds;

This year, hygroscopic seeding was continued as an important component of the operations, and the results indicate a noticeable improvement in the dynamics of the seeded clouds. The results obtained for the seeded small clouds reinforce the idea that there exist a strong synergy between the hygroscopic and the glaciogenic actions. More intensive uses of hygroscopic material is advice.